Integrating Design and Verification Decisions

Alejandro Salado, PhD
Assistant Professor of Systems Science and Systems Engineering
Grado Department of Industrial & Systems Engineering
Virginia Tech
Email: asalado@vt.edu
Do you consider VERIFICATION when designing a system?
Beyond DESIGNING features for verification
TRADITIONALLY...

DESIGN A SYSTEM

DEFINE ITS VERIFICATION STRATEGY
WITH NEW APPROACHES…

TRADESPACE EXPLORATION
WITH NEW APPROACHES…

Value-Driven Design

Value = Cost + Benefit + Consequences
Preferred Strategy = Highest E(V)

E(V) = \sum (Probability \cdot VALUE)

E(V_{min}) \leq E(V_{test}) \leq E(V_{max})

PRODUCT Prob. (Good) Prob. (Bad)

1st Req. PASS

2nd Req. PASS

OUTCOMES

PRODUCT Prob. (Good) Prob. (Bad)

FAIL

PROBABILITY

Good product Bad Product

REWORK

3X

FAIL 3X

Value-Driven Design
But what is VERIFICATION, really?
Validation left out in this paper…

VERIFICATION is knowledge discovery

System CHARACTERIZATION with a given level of confidence
\[E \left[S_{\text{VALUE}} \right] = f \left(S_c, P(S_c), SN \right) \]

\[\text{max}_{P(S_c)} f \left(\text{arg max}_{S_c} f \left(S_c, 1, SN \right), P(S_c), SN \right) \]

\[\land \]

\[\text{max}_{S_c, P(S_c)} f \left(S_c, P(S_c), SN \right) \]
TWO design alternatives: A and B
THREE verification alternative strategies: 1, 2, & 3
SEQUENTIAL DECISIONS

Design benchmark

Design decision

Alternative A
FALSE
-350

Value 1
25.0%
650
0.0%
300

Value 2
50.0%
400
0.0%
50

Value 3
25.0%
200
0.0%
-150

Alternative B
TRUE
-100

Value 3
95.0%
200
95.0%
100

Value 4
5.0%
180
5.0%
80

Alternatives:

Alternative A
Value 1
Value 2
Value 3

Alternative B
Value 3
Value 4
SEQUENTIAL DECISIONS

<table>
<thead>
<tr>
<th>Decision</th>
<th>Value 1 (%)</th>
<th>Value 2 (%)</th>
<th>Value 3 (%)</th>
<th>Value 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification decision</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Verif Strategy 1</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Verif Strategy 2</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>No verification</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

DESIGN B + VERIFICATION 3

- **Verif Strategy 1**
 - **Value 1**: 99%
 - **Value 2**: 99%
 - **Value 3**: 99%
 - **Value 4**: 99%

- **Verif Strategy 2**
 - **Value 1**: 97%
 - **Value 2**: 97%
 - **Value 3**: 97%
 - **Value 4**: 97%

- **No verification**
 - **Value 1**: 99%
 - **Value 2**: 99%
 - **Value 3**: 99%
 - **Value 4**: 99%
CONCURRENT DECISIONS

Design A

Verification Strategy 1

Value 1: 80.0% Value 3: 80.0%

Value 2: 650
Value 3: 200

Verification decision

Value 1: 140
Value 2: 15.0%
Value 3: 400
Value 4: -50

Alternative A

Value 1: 15.0%
Value 3: 400
Value 4: -50

Verification Strategy 2

Value 1: 140
Value 2: 15.0%
Value 3: 400
Value 4: -50

No Verification

Value 1: 5.0%
Value 2: 5.0%
Value 3: 200
Value 4: -250

Verification decision

Value 1: -350
Value 2: 140
Value 3: 650
Value 4: 200

Design decision

Value 1: 99.0%
Value 3: 99.0%

Alternative B

Value 1: 140
Value 2: 99

Verification Strategy 2

Value 1: 99.0%
Value 3: 99.0%

No Verification

Value 1: 5.0%
Value 2: 5.0%
Value 3: 200
Value 4: -100

Huntsville, AL 3/29/2016

Dr. Alejandro Salado – Grado Department of Industrial and Systems Engineering
<table>
<thead>
<tr>
<th>DECISION</th>
<th>SEQUENTIAL</th>
<th>CONCURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EXPECTED VALUE</td>
<td>99</td>
<td>140</td>
</tr>
</tbody>
</table>

Verification NOT ONLY informs the design of an alternative, it ALSO informs the selection of the design alternative.
NEXT

Decomposition and composition

Scalability

Beyond design and verification
IMAGE SOURCES

Slide 5 notional verification tradespace: Salado A. Applying tradespace exploration to verification engineering: From practice to theory and back again. 2016 Conference on Systems Engineering Research (CSER), Huntsville, AL (USA)

Slide 6 VDD process image: http://www.aere.iastate.edu/bloebaum/

Impact of Organization Structure on the Value of a Commercial Communication Satellite

Benjamin Kwasa
Dr. Hanumanthrao Kannan
Dr. Christina L. Bloebaum
Introduction

• What are large-scale complex engineered systems (LSCES)?
 • Entities that are an aggregate of multiple parts
 • Tightly coupled yielding a collective behavior
 • Simple summation of parts does not produce intended result
 • Associated with high cost and risk
 • Require large organizations to develop
 • Often need to interact with other complex systems and therefore organizations
Introduction

• Systems Engineering (INCOSE)
 • Requirements formulation and propagation
 • Hierarchical decomposition of system to subsystems
 • Requirements Documents
 • Stakeholders' Requirements Document (StkhldrsRD)
 • System Requirements Document (SRD)
 • Systems Requirement Validation Document (SRVD)
 • Sequential Design implementation
Introduction

• Potential drawbacks of requirements-driven design
 • Limits the design space
 • Requirements remove unwanted areas
 • Feasibility is the end goal of the design process
 • Does not offer preferences on alternatives in the feasible region
 • Use of Interface Control Documents (ICD) to keep track of couplings
 • Does not address organization structure design
Introduction
Introduction

• Need for a different approach to systems design
 • Achieve Michael Griffin’s definition of an elegant design
 • Effective
 • Efficient
 • Robust
 • Minimize Unintended consequences
 • Foundations for design of elegant systems
 • Multidisciplinary Design Optimization
 • Value-Driven Design
 • Decision Analysis
 • Organization Design
Background

- Multidisciplinary Design Optimization (MDO)
 - Evolved from structural optimization in 1980s
 - Utilizes objective function, equality and inequality constraints to find optimum
 - Allows for optimization of complex systems vis-à-vis coupled analyses
Background

• MDO
 • Mathematical quantification of couplings has been previously addressed in research work (Bloebaum, C.L, English, K.)

GSE Method: Uses local sensitivities to obtain system derivatives to capture system behavior

\[
\begin{bmatrix}
I & -\frac{\partial Y_A}{\partial Y_B} \\
-\frac{\partial Y_B}{\partial Y_A} & I
\end{bmatrix}
\begin{bmatrix}
\frac{dY_A}{dX_A} & \frac{dY_A}{dX_B} \\
\frac{dY_B}{dX_A} & \frac{dY_B}{dX_B}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial Y_A}{\partial X_A} & 0 \\
0 & \frac{\partial Y_B}{\partial X_B}
\end{bmatrix}
\]
Background

• Value-Driven Design (VDD)
 • Developed in the late 1990s
 • Approach to design that places emphasis on capturing stakeholder preference in a value function “System Critical Stakeholders (SCS’s)”
 • This allows for direct comparison of alternatives through value
 • In MDO, VDD replaces the objective function and many constraints with a value function
Background

• VDD
 • Commercial application (profit, customer retention, etc.)
 • Government application (operational success e.g. survivability, effectiveness)
Background

• Organization Design
 • Science of the design and analysis of organizational structures
 • Interactions amongst entities in an organization
 • Interactions amongst entities across organizations
Background

• Organization Design
 • Evaluation of entities’ tasks: coordination (information flow), specialization, saturation, superiority
• Two main organizational structure types
 • Hierarchical
 • Hybrid hierarchical
 • Spider web
Background

- Smaller evolutionary companies e.g. software development firms begin by using spider web structures.
Background

- Larger firms with definitive products utilize hierarchical structures
Background

• Mirroring hypothesis
 • Organizations with high dependency between entities produce products whose product structure mirror the organization
 • Organizations’ use of resources is most efficient when the organization structure mirrors the product structure
 • A deviation from mirroring is explored herein
Background

• Past research:
 • Bringing MDO and VDD together to design complex systems
 • True stakeholder preferences captured (VDD)
 • Physical interactions captured (MDO)
 • Addressing uncertainties in a VDD/MDO formulation
 • Addressing coupling strengths under uncertainties

• Current work:
 • Incorporate organization design in the framework for LSCES design to improve the design process
Methodology - Commercial Communication Satellite

- Hierarchical decomposition (represents both satellite’s physical structure and organization’s structure)
Methodology—Commercial Communication Satellite

- Value function formulation
 - Objective function replaced by value function
 - True preferences are captured - Net present profit (Commercial satellite company assumed)
 - Requirements are drastically reduced

\[
\text{VDD formulation}
\]

\[
\begin{align*}
\min \ f(X,y) &= -\text{Net present profit} = -V \\
V &= f(\text{Satellite Cost}, Revenue) = -\text{Satellite Cost} + \sum_{y=1}^{OL} \frac{\text{Revenue}_y}{(1+r_d)^y} \\
r_d &: \text{discount factor} = 10\% \\
OL &: \text{Operational Lifetime} = 10 \text{ years}
\end{align*}
\]

Traditional formulation

\[
\begin{align*}
\text{find } X &= [S_{\text{long}}, G_{\text{long}}, G_{\text{lat}}, G_{\text{lat}R}, I_0, I_{\text{sup}}, P_{\text{at}}, P_{\text{gt}}, D_{\text{at}}, D_{\text{gt}}, D_{\text{gt}}.X_{\text{discrete}}]^T \\
\text{Min } f(X,y) &= \text{Total Spacecraft mass} \\
\text{s.t. } g_1: 10\text{dB} - \text{SNR_{composite}} \leq 0 \\
g_2: M_{\text{payload}} + M_{\text{propulsion}} + M_{\text{power}} + M_{\text{ADCs}} + M_{\text{thermal}} + M_{\text{structures}} - 1000 \leq 0 \\
g_3: \text{Array size} - 40m^2 \leq 0 \\
g_4: L_z - 5m \leq 0 \text{ or } h_z - 5m \leq 0 (\text{depends on bus config.}) \\
g_5: r_z - 2.5m \leq 0 \text{ or } w_z - 2.5m \leq 0 (\text{depends on bus config.}) \\
25^\circ N \leq G_{\text{lat}} \leq 50^\circ N \\
1 \text{ GHz} \leq f_a \leq 100 \text{ GHz} \\
1 \text{ GHz} \leq f_{\text{sp}} \leq 100 \text{ GHz} \\
5 \text{ W} \leq P_{\text{at}} \leq 100 \text{ W} \\
300 \text{ W} \leq P_{\text{gt}} \leq 30000 \text{ W} \\
0.5m \leq D_{\text{at}} \leq 2.5m, \\
0.5m \leq D_{\text{gt}} \leq 2.5m, \\
2m \leq D_{\text{gt}} \leq 20m \\
2m \leq D_{\text{gt}} \leq 20m \ldots
\end{align*}
\]
Methodology– Commercial Communication Satellite

• Value function formulation
 • Value function is augmented by inclusion of organization structure cost
 • True preferences are captured - net present profit (Commercial satellite company assumed)
 • Net present profit includes product and organization structure (process) cost

VDD formulation

\[\min f(X, y) = -\text{Net present profit} = -V \]

\[V = f(\text{Satellite Cost, Revenue}) = -\text{Satellite Cost} + \sum_{y=1}^{\text{OL}} \frac{\text{Revenue}_y}{(1+r_d)^y} \]

- \(r_d \): discount factor = 10%
- \(t_{dev} \): development time rounded up to years
- \(\text{OL} \): Operational Lifetime = 10 years
- \(y \): year
- Total Cost = Satellite Cost + Org Structure Cost
- Org Structure Cost = \(\sum_{n=1}^{s} n_c \cdot c_{\text{cost}_n} + \sum_{n=1}^{s} n_s \cdot c_{\text{cost}_n} \)
- \(c_{\text{cost}_n} \): cost of coordination of subsystem \(n \)
- \(s \): total number of subsystems
- \(n_c \): number of coordination executions
- \(n_s \): number of specialization executions
- \(n \): subsystem index
Methodology – Commercial Communication Satellite

- Prescription of system’s organization parameters
 - Time and cost
 - Specialization and coordination
Results – Pure Hierarchy Structure

- System value measured for a satellite system under a pure hierarchy organization structure.
 - Development dollars and time are focused higher up in the organization.
 - This creates an environment where changes at the bottom take a long time to be redistributed.

<table>
<thead>
<tr>
<th>Pure Hierarchy</th>
<th>Coordination Count</th>
<th>Specialization Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. Satellite</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Payload</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Ground</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Engine</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Power</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>ADCS</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Thermal</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Structures</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Satellite Transponder</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Satellite Antenna</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ground Transponder</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ground Antenna</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Propellant</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Power Source</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Power Storage</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thermal Finish</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiator & Heater</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bus Material</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Satellite Transmitting Antenna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Satellite Receiving Antenna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ground Transmitting Antenna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ground Receiving Antenna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Propellant Tank</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Development Time	3.35 years
Organization Cost	$34,432,000
Net Present Profit	
w/o Org. Structure	$307,226,000
w/ Org. Structure	$272,794,000
Results – Complete Mirrored Structure

- System value measured for a satellite system under a completely mirrored organization structure.
 - Development dollars and time are distributed according to subsystem involvement.
 - It is possible to identify the critical development path based on individual development times.

<table>
<thead>
<tr>
<th>Mirrored Structure</th>
<th>Coordination Count</th>
<th>Specialization Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. Satellite</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Payload</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ground</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Engine</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Power</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ADCS</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Thermal</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Structures</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Satellite Transponder</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Satellite Antenna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ground Transponder</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ground Antenna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Propellant</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Power Source</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Power Storage</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Thermal Finish</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Radiator & Heater</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bus Material</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Satellite Transmitting Antenna</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Satellite Receiving Antenna</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ground Transmitting Antenna</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ground Receiving Antenna</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Propellant Tank</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mirrored Structure</th>
<th>Development Time</th>
<th>Organization Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Org. Structure</td>
<td>2.58 years</td>
<td>$25,732,000</td>
</tr>
<tr>
<td>w/ Org. Structure</td>
<td></td>
<td>$307,226,000</td>
</tr>
<tr>
<td>w/ Org. Structure</td>
<td></td>
<td>$281,494,000</td>
</tr>
</tbody>
</table>
Conclusion

• Organization Design plays a vital role in the design and development of LSCESs.

• Including organization cost in the value function allows for appropriate modeling and prediction of system designs and system value.

• It is possible to capture the relationship between product and process in the design of LSCESs.
Acknowledgements

National Science Foundation (NSF), grant CMMI-1300921
Appendix - Methodology

- Demonstration of Complex System

\[V = 2A_{111} + A_{121} \]
\[A_{111} = 2A_{211} + A_{221} - A_{241} - 2x_2 \]
\[A_{121} = 3A_{231} + 2A_{241} - x_4 \]
\[A_{211} = x_1 - 2x_3 + x_1^2 + A_{221} \]
\[A_{221} = x_2^2 + \frac{A_{211}}{2} \]
\[A_{231} = x_3x_4 - 3x_3 - \frac{A_{241}}{2} + 5A_{211} \]
\[A_{241} = x_4 - x_6 + x_5^2 + A_{231} \]
Appendix - Methodology

\[Cost_{org} = Cost_{spec} + Cost_{coord} \] \hspace{1cm} (8)

\[Cost_{spec} =Cost_{specS1} + \sum_{i=1}^{2} Cost_{specSSLi} \] \hspace{1cm} (9)

\[Cost_{coord} =Cost_{coorS1} + \sum_{i=1}^{2} Cost_{coorSSLi} \] \hspace{1cm} (10)

\[Cost_{specSSLi} = \sum_{j=1}^{m} (sc_{j})S_{j} \] \hspace{1cm} (11)

where \(m \) = number of subsystems in SSLi

\(sc_{j} \) = number of specialization executions for the \(j^{th} \) subsystem

\[S_{j} = \text{unit cost of specialization for the } j^{th} \text{ subsystem} \]

\[Cost_{coorSSLi} = \sum_{j=1}^{m} (cc_{j})C_{j} \] \hspace{1cm} (12)

where \(m \) = number of subsystems in SSLi

\(cc_{j} \) = number of coordination executions for the \(j^{th} \) subsystem

\[C_{j} = \text{unit cost of coordination for the } j^{th} \text{ subsystem} \]

<table>
<thead>
<tr>
<th>Organization Parameter</th>
<th>Unit Cost</th>
<th>Unit Task Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec. S1 (V)</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Spec. S11 (A111)</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Spec. S12 (A121)</td>
<td>1.15</td>
<td>1.0</td>
</tr>
<tr>
<td>Spec. S21 (A211)</td>
<td>0.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Spec. S22 (A221)</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Spec. S23 (A231)</td>
<td>0.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Spec. S24 (A241)</td>
<td>0.15</td>
<td>2.5</td>
</tr>
<tr>
<td>Coord. SSL1</td>
<td>0.075</td>
<td>0.25</td>
</tr>
<tr>
<td>Coord. SSL2</td>
<td>0.03</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Appendix - Methodology

Pure Hierarchy

Complete mirroring

Partial mirroring
Appendix – Results: Value-Based Organization Structuring

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Hierarchy</td>
<td>68.55</td>
<td>55.17</td>
<td>0.00</td>
<td>0.00</td>
<td>4.30</td>
<td>0.00</td>
<td>14.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Complete Mirror</td>
<td>71.38</td>
<td>60.75</td>
<td>2.83</td>
<td>5.58</td>
<td>1.47</td>
<td>-2.83</td>
<td>11.92</td>
<td>-2.83</td>
<td>3.96</td>
<td>9.19</td>
</tr>
<tr>
<td>Partial Mirror (A241 – A111)</td>
<td>71.10</td>
<td>60.45</td>
<td>2.55</td>
<td>5.28</td>
<td>1.75</td>
<td>-2.55</td>
<td>12.20</td>
<td>-2.55</td>
<td>3.59</td>
<td>8.74</td>
</tr>
<tr>
<td>Partial Mirror (A211 – A231)</td>
<td>71.33</td>
<td>60.71</td>
<td>2.78</td>
<td>5.54</td>
<td>1.52</td>
<td>-2.78</td>
<td>11.97</td>
<td>-2.78</td>
<td>3.90</td>
<td>9.13</td>
</tr>
</tbody>
</table>
Appendix – Results: Coupling Suspension

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pure Hierarchy</td>
<td>68.55</td>
<td>55.17</td>
<td>0.00</td>
<td>0.00</td>
<td>10.45</td>
<td>4.30</td>
<td>14.75</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Pure Hierarchy</td>
<td>62.64</td>
<td>54.01</td>
<td>-5.91</td>
<td>-1.16</td>
<td>8.55</td>
<td>3.01</td>
<td>11.56</td>
<td>-8.63</td>
<td>-2.11</td>
</tr>
<tr>
<td>3</td>
<td>Pure Hierarchy</td>
<td>78.38</td>
<td>71.63</td>
<td>9.83</td>
<td>16.46</td>
<td>7.55</td>
<td>1.96</td>
<td>9.51</td>
<td>14.34</td>
<td>29.83</td>
</tr>
<tr>
<td>1</td>
<td>Complete Mirror</td>
<td>71.38</td>
<td>60.75</td>
<td>2.83</td>
<td>5.58</td>
<td>10.45</td>
<td>1.47</td>
<td>11.92</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Complete Mirror</td>
<td>64.63</td>
<td>62.46</td>
<td>-3.92</td>
<td>7.29</td>
<td>8.55</td>
<td>1.02</td>
<td>9.57</td>
<td>-9.46</td>
<td>2.82</td>
</tr>
<tr>
<td>3</td>
<td>Complete Mirror</td>
<td>79.65</td>
<td>71.20</td>
<td>11.10</td>
<td>16.03</td>
<td>7.55</td>
<td>0.72</td>
<td>8.24</td>
<td>11.59</td>
<td>17.20</td>
</tr>
<tr>
<td>1</td>
<td>Partial Mirror (A241 – A111)</td>
<td>71.10</td>
<td>60.45</td>
<td>2.55</td>
<td>5.28</td>
<td>10.45</td>
<td>1.75</td>
<td>12.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Partial Mirror (A241 – A111)</td>
<td>64.32</td>
<td>62.07</td>
<td>-4.23</td>
<td>6.90</td>
<td>8.55</td>
<td>1.33</td>
<td>9.88</td>
<td>-9.54</td>
<td>2.67</td>
</tr>
<tr>
<td>3</td>
<td>Partial Mirror (A241 – A111)</td>
<td>79.42</td>
<td>70.87</td>
<td>10.87</td>
<td>15.70</td>
<td>7.55</td>
<td>1.00</td>
<td>8.48</td>
<td>11.70</td>
<td>17.24</td>
</tr>
<tr>
<td>1</td>
<td>Partial Mirror (A211 – A231)</td>
<td>71.33</td>
<td>60.71</td>
<td>2.78</td>
<td>5.54</td>
<td>10.45</td>
<td>1.52</td>
<td>11.97</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Partial Mirror (A211 – A231)</td>
<td>64.58</td>
<td>62.41</td>
<td>-3.97</td>
<td>7.24</td>
<td>8.55</td>
<td>1.07</td>
<td>9.62</td>
<td>-9.47</td>
<td>2.81</td>
</tr>
<tr>
<td>3</td>
<td>Partial Mirror (A211 – A231)</td>
<td>79.54</td>
<td>71.09</td>
<td>10.99</td>
<td>15.92</td>
<td>7.55</td>
<td>0.80</td>
<td>8.35</td>
<td>11.51</td>
<td>17.10</td>
</tr>
</tbody>
</table>
An Agent-Based Simulation Framework for Evaluating Flow-Down Approaches in Value-Driven Systems Engineering

Sean Vermillion
Big Picture: Delegation in SE

System-Level Designer

Required Domain Knowledge
Big Picture: Delegation in SE

System-Level Designer

Design Guidance

Design Specs

Domain Expert

Required Domain Knowledge

49
Design Guidance Flow-Down in SE

Requirement Flow-Down:

RFD Promise: Verifiability

RFD Peril: Little guidance for choosing between feasible alternative.

Objective Flow-Down:

OFD Promise: Explicit Preferences

OFD Peril: Ambiguous when to keep searching for optimal alternative.
Research Motivation

Looming Question: Requirements or objectives?

This Research: *How can we compare approaches while considering agency?*

Proposition: *agent-based framework* to simulating flow-down approaches
Framework Overview

Model-Based Validation

- Requirement Flow-Down
- Objective Flow-Down

SE Process Model

- Req. FD Value
- Obj. FD Value

Representative System Design Scenario

Agent Model: Heterogeneous Engineers in Configurable Organizations (HEICO)
A Principal incentivizes an agent to act in a way that maximizes the Principal’s utility.
HEICO Foundations: Modeling Flow-Down

Model flow-down approaches as incentives

$$v_{req}^{i} = \begin{cases} K_{1}^{req} & \text{if req met} \\
K_{2}^{req} & \text{if req not met} \end{cases}$$

$$v_{obj}^{i} = K_{1}^{obj} \times g_{i} + K_{2}^{obj}$$
HEICO Foundations: Modeling Agents

Agent effort provision

Principal

Agent

maximize w. r. t. \[E[u(v_i(f(a|\theta_i)) - c_a(a|\theta_i)|\theta_i)] \]

Value of Effort
Production Technology
Risk Attitude
Type

\(c_a(\cdot) \) Disutility for applying effort
\(f(\cdot) \) Mapping from effort to outcome
\(u(\cdot) \) Tolerance for uncertain outcomes
\(\theta_i \) Specific characteristics of the agent
HEICO Foundations: Modeling Value of Effort

- Convex Function
 \[c_a(a) = \rho \frac{a^2}{2} \]

- Parameter:
 - \(\rho \): Marginal increase in effort costs

- Convexity assumption common in agency theory literature

\[
\begin{align*}
\text{maximize} & \quad E[u(v_i(f(a|\theta_i)) - c_a(a|\theta_i)|\theta_i)] \\
\text{w. r. t.} & \quad a
\end{align*}
\]
HEICO Foundations: Modeling Production Technology

- Generalized Logistic Function
 \[f(a) = z_o + \frac{z_f - z_o}{1 + Q \exp(-ra)} \]

- Parameters:
 - \(\mu \): Where maximum growth rate occurs
 - \(r \): Marginal growth rate
 - \(z_o \): Initial capability \(z_o = g_i(x_o) \)
 - \(z_f \): Optimal capability \(z_f = g_i(x^*) \)

- Approximation of trends observed in design literature

\[
\text{maximize} \quad E[u(v_i(f(a|\theta_i)) - c_a(a|\theta_i)|\theta_i)] \\
\text{w. r. t.} \quad a
\]
HEICO Foundations: Modeling Risk Attitude

- Power Utility Function

\[u(\pi) = \begin{cases} \pi^{\alpha} & \pi \geq 0 \\ -\lambda (-\pi)^{\beta} & \pi < 0 \end{cases} \]

- Parameters:
 - \(\alpha \): Relative risk aversion for positive \(\pi \)
 - \(\beta \): Relative risk aversion for negative \(\pi \)
 - \(\lambda \): Negative outcome aversion

- Based on empirical trends of how people form their risk attitudes

- Other functional forms exist...same basic structure

\[
\text{maximize} \quad E[u(v_i(f(a|\theta_i)) - c_a(a|\theta_i)|\theta_i)]
\]

w. r. t. \(a \)
HEICO Foundations: Linking Effort Provision and Physics

minimize \[\| f(a_i^*) - g_i(x_i, x_{-i}) \|^2 \]

w. r. t.

Other Agents

Leader-Follower

Concurrent

System Coordinator

…etc.

59
HEICO Summary

Design Guidance

Effort Provision → Link to Physics → Share Info
Illustrative Example: Study Design

AAO analysis:
- $z_1^* = 0.070$
- $z_2^* = 0.179$
- $v_0^* = 0.3372$

Requirement
$$v_{i}^{req} = \begin{cases} 1000 & z \geq z_i^* \\ 0 & z < z_i^* \end{cases}$$

Objective
$$v_{i}^{obj} = 1000 \times \frac{\partial v_0}{\partial z_i} \bigg|_{z_i^*}$$

<table>
<thead>
<tr>
<th>ρ_1</th>
<th>ρ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>{Low,Low}</td>
<td>{High,Low}</td>
</tr>
<tr>
<td>{Low,High}</td>
<td>{High,High}</td>
</tr>
</tbody>
</table>
Illustrative Example: Results

<table>
<thead>
<tr>
<th>(\rho_1)</th>
<th>(\rho_2)</th>
<th>Requirements</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>(0.2381^*)</td>
<td>N/A</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>(0.2381^*)</td>
<td>N/A</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>(0.2381^*)</td>
<td>N/A</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>(0.2381^*)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Summary

How can we compare approaches while considering agency?

- Computation framework with theoretical background
- **Not** to replace empirical research or rigorous mathematics
- Agency impacted results compared to All-at-Once analysis
Aggregated Effort across Iteration

\[\rho = \{\text{Low, Low}\} \]
\[\rho = \{\text{High, Low}\} \]
\[\rho = \{\text{Low, High}\} \]
\[\rho = \{\text{High, High}\} \]

<table>
<thead>
<tr>
<th>(\rho_1)</th>
<th>(\rho_2)</th>
<th>Requirements</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>0.3372</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>0.3372</td>
<td>6</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>0.3372</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>0.3372</td>
<td>6</td>
</tr>
</tbody>
</table>
Relaxing the Requirements

$$\rho = \{ \text{Low, Low} \}$$

$$\rho = \{ \text{High, Low} \}$$

$$\rho = \{ \text{Low, High} \}$$

$$\rho = \{ \text{High, High} \}$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Requirements</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Value, v_0</td>
<td>Iterations</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>0.2824</td>
<td>4</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>0.2824</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>0.2824</td>
<td>4</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>0.2824</td>
<td>4</td>
</tr>
</tbody>
</table>